Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 929: 172620, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642748

ABSTRACT

Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels. Focusing on the multifunctional gill, we unraveled the tilapia S. melanotheron key strategies to cope with different environmental conditions, ranging from freshwater up to hypersaline habitats. De novo transcriptome assembly based on RNAseq allowed for the analysis of 40,967 annotated transcripts among samples collected in three wild populations at 0, 40 and 80 ‰. A trend analysis of the expression patterns revealed responses across the salinity gradient with different gene pathways involved. Genes linked to ion transport, pH regulation and cell surface receptor signaling were mainly upregulated in the high salinity habitat. We identified tight junction proteins that were critical in high salinity habitats and that were different from the well-known tightening junctional proteins identified and expressed in fresh water. Expression profiles also suggest a change in the vascular tone that could be linked to an osmorespiratory compromise not only in fresh water, but also in high salinity environments. A striking downregulation of genes linked to the immune system and to the heat shock response was observed suggesting an energetic trade-off between immunity and acclimation/adaptation in the hypersaline habitat. The high expression of transcripts coding for immune and heat shock response in the freshwater habitat suggests the establishment of powerful mechanisms to protect gills from environmental threats and to maintain protein integrity. Non-directional expression trends were also detected with an upregulation of genes only in the hypersaline habitat (80 ‰) or only in the marine habitat (40 ‰). Unravel physiological strategies in S. melanotheron populations will help to better understand the molecular basis of fish euryhalinity in salinity-contrasted environments.


Subject(s)
Gene Expression Profiling , Gills , Salinity , Tilapia , Transcriptome , Animals , Gills/metabolism , Tilapia/genetics , Tilapia/physiology , Seawater
2.
Mol Cell Endocrinol ; 588: 112216, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38556161

ABSTRACT

Photoperiod is the main environmental driver of seasonal responses in organisms living at temperate and polar latitudes. Other external cues such as food and temperature, and internal cues including hormones, intervene to fine-tune phasing of physiological functions to the solar year. In mammals, the medio-basal hypothalamus (MBH) is the key integrator of these cues, which orchestrates a wide array of seasonal functions, including breeding. Here, using RNAseq and RT-qPCR, we demonstrate that molecular components of the photoperiodic response previously identified in ewes are broadly conserved in does (female goats, Capra hircus), with a common core of ∼50 genes. This core group can be defined as the "MBH seasonal trancriptome", which includes key players of the pars tuberalis-tanycytes neuroendocrine retrograde pathway that governs intra-MBH photoperiodic switches of triiodothyronine (T3) production (Tshb, Eya3, Dio2 and SlcO1c1), the two histone methyltransferases Suv39H2 and Ezh2 and the secreted protein Vmo1. Prior data in ewes revealed that T3 and estradiol (E2), both key hormones for the proper timing of seasonal breeding, differentially impact the MBH seasonal transcriptome, and identified cellular and molecular targets through which these hormones might act. In contrast, information regarding the potential impact of progesterone (P4) upon the MBH transcriptome was nonexistent. Here, we demonstrate that P4 has no discernible transcriptional impact in either does or ewes. Taken together, our data show that does and ewes possess a common core set of photoperiod-responsive genes in the MBH and conclusively demonstrate that P4 is not a key regulator of the MBH transcriptome.


Subject(s)
Goats , Hypothalamus , Photoperiod , Progesterone , Seasons , Transcriptome , Animals , Female , Progesterone/metabolism , Progesterone/pharmacology , Hypothalamus/metabolism , Transcriptome/genetics , Sheep , Goats/genetics , Goats/physiology , Gene Expression Regulation/drug effects , Triiodothyronine/pharmacology
3.
Elife ; 132024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224094

ABSTRACT

Numerous intracellular bacterial pathogens interfere with macrophage function, including macrophage polarization, to establish a niche and persist. However, the spatiotemporal dynamics of macrophage polarization during infection within host remain to be investigated. Here, we implement a model of persistent Salmonella Typhimurium infection in zebrafish, which allows visualization of polarized macrophages and bacteria in real time at high resolution. While macrophages polarize toward M1-like phenotype to control early infection, during later stages, Salmonella persists inside non-inflammatory clustered macrophages. Transcriptomic profiling of macrophages showed a highly dynamic signature during infection characterized by a switch from pro-inflammatory to anti-inflammatory/pro-regenerative status and revealed a shift in adhesion program. In agreement with this specific adhesion signature, macrophage trajectory tracking identifies motionless macrophages as a permissive niche for persistent Salmonella. Our results demonstrate that zebrafish model provides a unique platform to explore, in a whole organism, the versatile nature of macrophage functional programs during bacterial acute and persistent infections.


Subject(s)
Host-Pathogen Interactions , Zebrafish , Animals , Macrophages/microbiology , Salmonella typhimurium , Phenotype
4.
Nucleic Acids Res ; 52(2): 738-754, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38059397

ABSTRACT

Understanding microRNA (miRNA) functions has been hampered by major difficulties in identifying their biological target(s). Currently, the main limitation is the lack of a suitable strategy to identify biologically relevant targets among a high number of putative targets. Here we provide a proof of concept of successful de novo (i.e. without prior knowledge of its identity) miRNA phenotypic target (i.e. target whose de-repression contributes to the phenotypic outcomes) identification from RNA-seq data. Using the medaka mir-202 knock-out (KO) model in which inactivation leads to a major organism-level reproductive phenotype, including reduced egg production, we introduced novel criteria including limited fold-change in KO and low interindividual variability in gene expression to reduce the list of 2853 putative targets to a short list of 5. We selected tead3b, a member of the evolutionarily-conserved Hippo pathway, known to regulate ovarian functions, due to its remarkably strong and evolutionarily conserved binding affinity for miR-202-5p. Deleting the miR-202-5p binding site in the 3' UTR of tead3b, but not of other Hippo pathway members sav1 and vgll4b, triggered a reduced egg production phenotype. This is one of the few successful examples of de novo functional assignment of a miRNA phenotypic target in vivo in vertebrates.


Subject(s)
Hippo Signaling Pathway , MicroRNAs , Oryzias , Animals , Binding Sites , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , RNA-Seq , Oryzias/metabolism
5.
Food Chem Toxicol ; 182: 114085, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37844793

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinylestradiol (EE2) are extensively used in human and veterinary medicine. Due to their partial removal by wastewater treatment plants, they are frequent environmental contaminants, particularly in drinking water. Here, we investigated the adverse outcomes of chronic exposure to mixtures of NSAIDs (ibuprofen, 2hydroxy-ibuprofen, diclofenac) and EE2 at two environmentally relevant doses in drinking water, on the reproductive organ development and fertility in F1-exposed male and female mice and in their F2 offspring. In male and female F1 mice, which were exposed to these mixtures, reproductive organ maturation, estrous cyclicity, and spermiogenesis were altered. These defects were observed also in F2 animals, in addition to some specific sperm parameter alterations in F2 males. Transcriptomic analysis revealed significant changes in gene expression patterns and associated pathways implicated in testis and ovarian physiology. Chronic exposure of mice to NSAID and EE2 mixtures at environmental doses intergenerationally affected male and female fertility (i.e. total number of pups and time between litters). Our study provides new insights into the adverse effects of these pharmaceuticals on the reproductive health and will facilitate the implementation of a future regulatory environmental risk assessment of NSAIDs and EE2 for human health.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Male , Animals , Mice , Ethinyl Estradiol/toxicity , Reproduction , Ibuprofen/pharmacology , Semen , Fertility , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Water Pollutants, Chemical/toxicity
6.
BMC Genomics ; 24(1): 331, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37322468

ABSTRACT

Physiological effects of ocean acidification associated with elevated CO2 concentrations in seawater is the subject of numerous studies in teleost fish. While the short time within-generation impact of ocean acidification (OA) on acid-base exchange and energy metabolism is relatively well described, the effects associated with transgenerational exposure to OA are much less known. Yet, the impacts of OA can vary in time with the potential for acclimation or adaptation of a species. Previous studies in our lab demonstrated that transgenerational exposure to OA had extensive effects on the transcriptome of the olfactory epithelium of European sea bass (Dicentrarchus labrax), especially on genes related to ion balance, energy metabolism, immune system, synaptic plasticity, neuron excitability and wiring. In the present study, we complete the previous work by investigating the effect of transgenerational exposure to OA on the hepatic transcriptome of European sea bass. Differential gene expression analysis was performed by RNAseq technology on RNA extracted from the liver of two groups of 18 months F2 juveniles that had been exposed since spawning to the same AO conditions as their parents (F1) to either actual pH or end-of-century predicted pH levels (IPCC RCP8.5), respectively. Here we show that transgenerational exposure to OA significantly impacts the expression of 236 hepatic transcripts including genes mainly involved in inflammatory/immune responses but also in carbohydrate metabolism and cellular homeostasis. Even if this transcriptomic impact is relatively limited compared to what was shown in the olfactory system, this work confirmed that fish transgenerationally exposed to OA exhibit molecular regulation of processes related to metabolism and inflammation. Also, our data expand the up-regulation of a key gene involved in different physiological pathways including calcium homeostasis (i.e. pthr1), which we already observed in the olfactory epithelium, to the liver. Even if our experimental design does not allow to discriminate direct within F2 generation effects from transgenerational plasticity, these results offer the perspective of more functional analyses to determine the potential physiological impact of OA exposure on fish physiology with ecological relevance.


Subject(s)
Bass , Transcriptome , Animals , Seawater/chemistry , Bass/metabolism , Hydrogen-Ion Concentration , Ocean Acidification , Liver
8.
Int J Mol Sci ; 24(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36982971

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinyl-estradiol (EE2) are among the most relevant endocrine-disrupting pharmaceuticals found in the environment, particularly in surface and drinking water due to their incomplete removal via wastewater treatment plants. Exposure of pregnant mice to NSAID therapeutic doses during the sex determination period has a negative impact on gonadal development and fertility in adults; however, the effects of their chronic exposure at lower doses are unknown. In this study, we investigated the impact of chronic exposure to a mixture containing ibuprofen, 2hydroxy-ibuprofen, diclofenac, and EE2 at two environmentally relevant doses (added to the drinking water from fetal life until puberty) on the reproductive tract in F1 exposed mice and their F2 offspring. In F1 animals, exposure delayed male puberty and accelerated female puberty. In post-pubertal F1 testes and ovaries, differentiation/maturation of the different gonad cell types was altered, and some of these modifications were observed also in the non-exposed F2 generation. Transcriptomic analysis of post-pubertal testes and ovaries of F1 (exposed) and F2 animals revealed significant changes in gene expression profiles and enriched pathways, particularly the inflammasome, metabolism and extracellular matrix pathways, compared with controls (non-exposed). This suggested that exposure to these drug cocktails has an intergenerational impact. The identified Adverse Outcome Pathway (AOP) networks for NSAIDs and EE2, at doses that are relevant to everyday human exposure, will improve the AOP network of the human reproductive system development concerning endocrine disruptor chemicals. It may serve to identify other putative endocrine disruptors for mammalian species based on the expression of biomarkers.


Subject(s)
Drinking Water , Endocrine Disruptors , Water Pollutants, Chemical , Pregnancy , Male , Humans , Female , Mice , Animals , Ethinyl Estradiol/adverse effects , Ibuprofen , Sexual Maturation , Anti-Inflammatory Agents, Non-Steroidal , Water Pollutants, Chemical/toxicity , Endocrine Disruptors/toxicity , Mammals
9.
J Neuroendocrinol ; 34(10): e13198, 2022 10.
Article in English | MEDLINE | ID: mdl-36168278

ABSTRACT

In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.


Subject(s)
Hypothalamus , Transcriptome , Humans , Animals , Sheep , Female , Seasons , Hypothalamus/metabolism , Photoperiod , Reproduction/physiology , Mammals
10.
BMC Genomics ; 23(1): 448, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35710351

ABSTRACT

BACKGROUND: Progressive CO2-induced ocean acidification (OA) impacts marine life in ways that are difficult to predict but are likely to become exacerbated over generations. Although marine fishes can balance acid-base homeostasis efficiently, indirect ionic regulation that alter neurosensory systems can result in behavioural abnormalities. In marine invertebrates, OA can also affect immune system function, but whether this is the case in marine fishes is not fully understood. Farmed fish are highly susceptible to disease outbreak, yet strategies for overcoming such threats in the wake of OA are wanting. Here, we exposed two generations of the European sea bass (Dicentrarchus labrax) to end-of-century predicted pH levels (IPCC RCP8.5), with parents (F1) being exposed for four years and their offspring (F2) for 18 months. Our design included a transcriptomic analysis of the olfactory rosette (collected from the F2) and a viral challenge (exposing F2 to betanodavirus) where we assessed survival rates. RESULTS: We discovered transcriptomic trade-offs in both sensory and immune systems after long-term transgenerational exposure to OA. Specifically, RNA-Seq analysis of the olfactory rosette, the peripheral olfactory organ, from 18-months-old F2 revealed extensive regulation in genes involved in ion transport and neuronal signalling, including GABAergic signalling. We also detected OA-induced up-regulation of genes associated with odour transduction, synaptic plasticity, neuron excitability and wiring and down-regulation of genes involved in energy metabolism. Furthermore, OA-exposure induced up-regulation of genes involved in innate antiviral immunity (pathogen recognition receptors and interferon-stimulated genes) in combination with down-regulation of the protein biosynthetic machinery. Consistently, OA-exposed F2 challenged with betanodavirus, which causes damage to the nervous system of marine fish, had acquired improved resistance. CONCLUSION: F2 exposed to long-term transgenerational OA acclimation showed superior viral resistance, though as their metabolic and odour transduction programs were altered, odour-mediated behaviours might be consequently impacted. Although it is difficult to unveil how long-term OA impacts propagated between generations, our results reveal that, across generations, trade-offs in plastic responses is a core feature of the olfactory epithelium transcriptome in OA-exposed F2 offspring, and will have important consequences for how cultured and wild fish interacts with its environment.


Subject(s)
Bass , Transcriptome , Animals , Bass/genetics , Carbon Dioxide/pharmacology , Homeostasis , Hydrogen-Ion Concentration , Oceans and Seas , Olfactory Mucosa , Seawater
11.
J Exp Bot ; 73(11): 3496-3510, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35224628

ABSTRACT

Lateral root organogenesis is a key process in the development of a plant's root system and its adaptation to the environment. During lateral root formation, an early phase of cell proliferation first produces a four-cell-layered primordium, and only from this stage onwards is a root meristem-like structure, expressing root stem cell niche marker genes, being established in the developing organ. Previous studies reported that the gene regulatory network controlling lateral root formation is organized into two subnetworks whose mutual inhibition may contribute to organ patterning. PUCHI encodes an AP2/ERF transcription factor expressed early during lateral root primordium development and required for correct lateral root formation. To dissect the molecular events occurring during this early phase, we generated time-series transcriptomic datasets profiling lateral root development in puchi-1 mutants and wild types. Transcriptomic and reporter analyses revealed that meristem-related genes were expressed ectopically at early stages of lateral root formation in puchi-1 mutants. We conclude that, consistent with the inhibition of genetic modules contributing to lateral root development, PUCHI represses ectopic establishment of meristematic cell identities at early stages of organ development. These findings shed light on gene network properties that orchestrate correct timing and patterning during lateral root formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Meristem , Plant Roots , Transcription Factors/metabolism
12.
Sci Rep ; 8(1): 15628, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30353142

ABSTRACT

We sampled ca 2500 specimens of Philaenus spumarius (Hemiptera: Aphrophoridae) throughout Corsica without a priori knowledge on the presence of symptoms on plants. We screened 448 specimens for the presence of Xylella fastidiosa (Xf) using qPCR and a custom nested PCR. qPCR appeared versatile and under-estimated the prevalence of Xf. Nested PCR showed that Xf was present in all populations. Molecular results were validated by prediction on the distribution of Xf made from tests conducted on plants, which shows the pertinence of using vectors in risk assessment studies. Xf was detected in tenerals and adults. Thus, P. spumarius could acquire Xf from its host plant, mostly Cistus monspeliensis in Corsica, which may act as reservoir for the next season. This contrasts with other observations and suggests that management strategies may have to be adapted on a case-by-case basis. At least two genetic entities and several variants of Xf not yet identified on plants were present in the insects, which suggests ancient introductions of Xf and a probable underestimation of the current diversity of the strains present in Corsica. Interestingly 6% of the specimens carried two subspecies of Xf. Studies are required to better characterize the strains present in Corsica and to determine how the disease was introduced, spread and why no sign of a potential epidemic was detected earlier. This study shows that, when sensitive enough methods are implemented, spittlebugs (and more specifically P. spumarius for which species distribution modelling shows it could be a good sentinel for Europe) can be used to predict and better assess the exact distribution of Xf. Furthermore, Xf multiply only in their foregut and does not become circulative, which facilitates its detection.


Subject(s)
Hemiptera/microbiology , Xylella/physiology , Alleles , Animals , Europe , France , Geography , Insect Vectors/microbiology , Phylogeny
13.
Plant Signal Behav ; 10(1): e977741, 2015.
Article in English | MEDLINE | ID: mdl-25517945

ABSTRACT

The plant root system is important for plant anchorage and nutrition. Among the different characteristics of the root system, root branching is a major factor of plasticity and adaptation to changing environments. Indeed, many biotic and abiotic stresses, such as drought or symbiotic interactions, influence root branching. Many studies concerning root development and root branching were performed on the model plant Arabidopsis thaliana, but this model plant has a very simplified root structure and is not able to establish any symbiotic interactions. We have recently described 7 stages for lateral root development in the model legume Medicago truncatula and found significant differences in the tissular contribution of root cell layers to the formation of new lateral roots (LR). We have also described 2 transgenic lines expressing the DR5:GUS and DR5:VENUS-N7 reporter genes that are useful to follow LR formation at early developmental stages. Here, we describe the use of these transgenic lines to monitor LR developmental responses of M. truncatula to the phytohormone abscisic acid (ABA) which is a major actor of stress and symbiotic interactions. We show that ABA promotes the formation of new lateral root primordia and their development, mostly at the late, pre-emergence stage.


Subject(s)
Abscisic Acid/pharmacology , Medicago truncatula/drug effects , Medicago truncatula/growth & development , Plant Roots/growth & development , Gene Expression Regulation, Plant/physiology , Medicago truncatula/genetics , Plant Development/drug effects , Plant Development/physiology , Plant Roots/cytology , Plants, Genetically Modified
SELECTION OF CITATIONS
SEARCH DETAIL
...